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ABSTRACT

In this paper we characterize

its output will be a reciprocal

Introduction

Let X = {X(t), 00 < ¢ < 0o} be a pro-
cess defined on some complete probahilj ty
space (2, F, P). The notion of reciprocal-
ity was first defined by Jamison [1]. and
studied in some extend by pasha [2] and
[3]. The process X has reciprocal prop-
€Tty on (—o0, 00) if for each n € N, and
for each reals o < v, and for each re.
als £, .. tw in the complement of intep
val (u,v), and finally for each € (u,v)

the system function of a linear filter that

process whenever jts input is a reciprocal one,

the conditional distribution of X; given
2, 1 X;i,...1X1n 1s the same as the
conditional distribution of Ay given X,
and X,

In [2] a martingale representation of
Gaussian stationary reciprocal processes
is given. In [3] the notion of reciprocality
is generalized. Jamison [1] proved that the
covariance function of Gaussian station-
ary reciprocal processes with zero mean is
of the following form

Cx(t) = E(X(s)X (t45)) = be~tl ¢ ¢ R,
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for some positive numbers a and b. [t is
clear that ¢*(X (t)) = b.
In this paper we make the following

assumptions:
Assumption A: we assume that the pro-
cess X satisfies the following conditions:

(i) X is Gaussion,

(ii) X is stationary,

(iii) The mean of X, is zero

(iv) The covariance function of X, is
continuous,

(v) X has reciprocal property on
(=00, 00).

Linear filters
Let X be the input of a
quasi system function h, i.e.

hit) =0,

Let ¥ = {y(t),~00 < t < 20} be the
output of the system, Le.

Y(t) = j; " hOX (¢ — s)ds.

It is well known that if the process X is

linear filter with

t <0,

Graussian and stationary then the out-put
process ¥ also is Gaussian and stationary.
In the following we want to determine the
function h so that if X statisfies assump-
tion A, then Y satisfies the assumption A,
specifically it has reciprocal property,

If X is stationary then the covariance
function of ¥ is given by

Cy(t) = E{ylt + s)y(s))
= fﬂ = R(8)Cx (s + D
= Cxl:t} * h[—S]

Vol 8. ;"NGJ' 2, 34#}‘)‘)&-9?

where * stands for the convolution of the
Cx(t) and hy(t) = h(—1).
We will use the following notions in

function

the sequel:
Cx(t) = B(X(t + )X (s)),
Cy(t) = B(Y(t + 5)Y(s))
Cxy(t) = E{X[f +5)¥Y(s))

Sx{w) = /:m e MO (t)dt
Hi{w) = fn et

Sy (w),Sxy(w)will be defined similarly.

Lemma. Let X zatisfies assumption 4
({1)-(iv)), then

Sxy(w) = Sx(w)H(—w)
.5’:.:[1:,':] = Sxyy I:IL'}HI:'LL.'}.

Proof. We have

Cyy = fﬂ "~ h(s)Cx (s + tds
= flx h(s)Cyx (s +t)ds

= /‘m h{—s)

= (CX #* |Fl|:H:I

Cx(t — s)ds

where hy(t) = h(—t). Therefore by taking
the Fourier transform we will have

Sxy(w) = Sx(w). H(w)

= Sx(w)H(—w).

Where Hy(w) is the fourier transform of
hy, which is equal to H{—w). A similar
computation will prove the second equal-
ity.

Now we have the following theorem.
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Theorem 1.

Let X satisfies assump-
tion A ((i)-(v)) and Cx(t) = bealdl, ot
Y be the output of the linear quasi sys-
tem with system function f. Then ¥ jg
reciprocal if and only if
_ a'b'(a® + w?)
H{w}H(~—w} = m}—-i-_—u-z_}

for some positive numhers aboa W

Proof. Acssume that the input and out-

put of the system satisfies as

sumption 4.
From
Cx(t) = healtl
we get
. 2ab
Sx{w) = Py

Similarly, for some o ~ 0, ¥ > 0, we have
Cy(t) = pevltl

Therefore

2a'l’

a'? 4 2
But, from lemma 1, we have

S;-—{w} =

Sy (w) = Sxy(w)H(w)
= Sxv(w).H(-w)H (w)

Therefore
2a't! 2ah
e = ——————Ff (e H{—wu
a'? + g2 a? 4 2 (w)H( )

From here we get
a't'(a? + 1?)
H{w)H({—w) = —_— L
Now assume that 5 satisfies the above re-
lation and the input process satisfies as-

sumption A ((i)-(v)), we prove that ¥ sat-
isfies assumption A ((i)-(v)). The only

Property that we have to prove is the re-
ciprocal broperty of V. From lemnma 1 and
the given condition op H we have

Sy(w) = Sx{w}H{uJ],H{-—w}
_2ab  a'¥(a® + w?)
@+ w? ghlq? w?)

Thus,
2a'H
Sy(w) = — ;
¥(¥) a'? 4 g2
This is the Fourier transform of a function
of the following form

Cy () = ble=a'ld

Now from the Jamison resylt in

[1] we con-
el

le that ¥ has reciproeal propertly.

Example: Ap example of this kind of
filters is
b.f
"0 = pE

The Fourier transform of f is

H{w) = gf‘_““k’?;
Therefore, for any a > () we have

I
H{w)H(—w) = %—
_ Va(a* + w?)
 bafa® + w?)
This filter will
ance function

take an input with covari-

Cx(t) = bealtl

to an output with covariance function

Cy(t) = delt
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This filter gives more weight to the most
recent input than to the most far inputs.
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